Modeling Semantic Relevance for Question-Answer Pairs in Web Social Communities

نویسندگان

  • Baoxun Wang
  • Xiaolong Wang
  • Chengjie Sun
  • Bingquan Liu
  • Lin Sun
چکیده

Quantifying the semantic relevance between questions and their candidate answers is essential to answer detection in social media corpora. In this paper, a deep belief network is proposed to model the semantic relevance for question-answer pairs. Observing the textual similarity between the community-driven questionanswering (cQA) dataset and the forum dataset, we present a novel learning strategy to promote the performance of our method on the social community datasets without hand-annotating work. The experimental results show that our method outperforms the traditional approaches on both the cQA and the forum corpora.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Exploring Relevance as Truth Criterion on the Web and Classifying Claims in Belief Levels

The Web has become the most important information source for most of us. Unfortunately, there is no guarantee for the correctness of information on the Web. Moreover, different websites often provide conflicting information on a subject. Several truth discovery methods have been proposed for various scenarios, and they have been successfully applied in diverse application domains. In this paper...

متن کامل

Community-Based Question Answering via Asymmetric Multi-Faceted Ranking Network Learning

Nowadays the community-based question answering (CQA) sites become the popular Internet-based web service, which have accumulated millions of questions and their posted answers over time. Thus, question answering becomes an essential problem in CQA sites, which ranks the high-quality answers to the given question. Currently, most of the existing works study the problem of question answering bas...

متن کامل

Combining Case-Based Reasoning and Semantic Indexing in a Question-Answer Service

This paper argues that knowledge technologies can be utilized in creating question-answer services on the semantic web. To ease the content indexer’s work, we propose semi-automatic semantic indexing for annotating question-answer pairs and case-based reasoning techniques for finding similar questions. To provide answers matching with the indexer’s and end-user’s information needs, methods for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010