Modeling Semantic Relevance for Question-Answer Pairs in Web Social Communities
نویسندگان
چکیده
Quantifying the semantic relevance between questions and their candidate answers is essential to answer detection in social media corpora. In this paper, a deep belief network is proposed to model the semantic relevance for question-answer pairs. Observing the textual similarity between the community-driven questionanswering (cQA) dataset and the forum dataset, we present a novel learning strategy to promote the performance of our method on the social community datasets without hand-annotating work. The experimental results show that our method outperforms the traditional approaches on both the cQA and the forum corpora.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملExploring Relevance as Truth Criterion on the Web and Classifying Claims in Belief Levels
The Web has become the most important information source for most of us. Unfortunately, there is no guarantee for the correctness of information on the Web. Moreover, different websites often provide conflicting information on a subject. Several truth discovery methods have been proposed for various scenarios, and they have been successfully applied in diverse application domains. In this paper...
متن کاملCommunity-Based Question Answering via Asymmetric Multi-Faceted Ranking Network Learning
Nowadays the community-based question answering (CQA) sites become the popular Internet-based web service, which have accumulated millions of questions and their posted answers over time. Thus, question answering becomes an essential problem in CQA sites, which ranks the high-quality answers to the given question. Currently, most of the existing works study the problem of question answering bas...
متن کاملCombining Case-Based Reasoning and Semantic Indexing in a Question-Answer Service
This paper argues that knowledge technologies can be utilized in creating question-answer services on the semantic web. To ease the content indexer’s work, we propose semi-automatic semantic indexing for annotating question-answer pairs and case-based reasoning techniques for finding similar questions. To provide answers matching with the indexer’s and end-user’s information needs, methods for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010